

k-Nearest Neighbour

Outline

- Hour 1
 - Student reviews, discussion and measures to incorporate them

Review, announcements

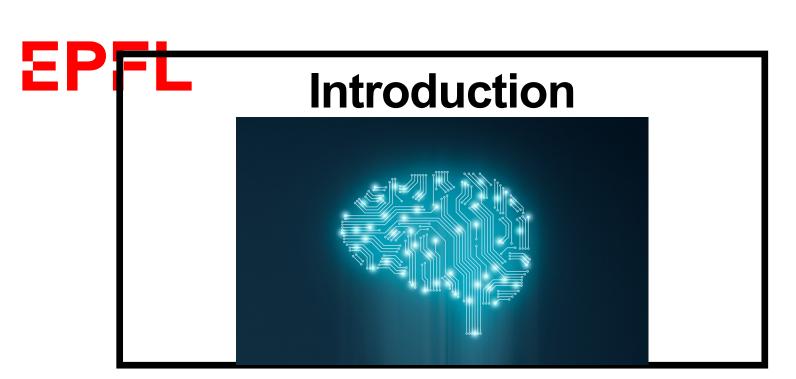
Hour 2: k-Nearest Neighbour (k-NN)

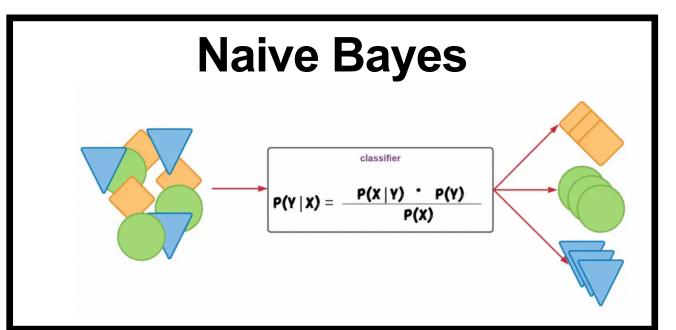
EPFL

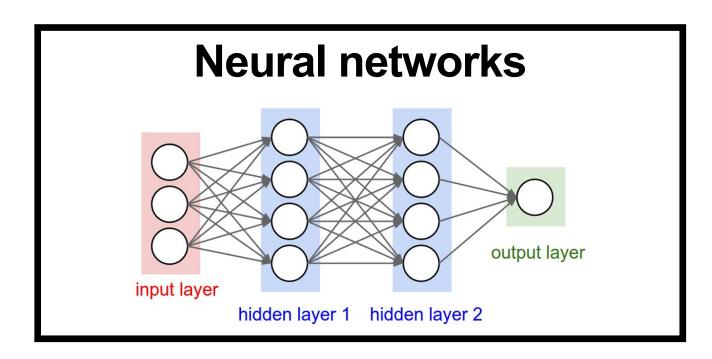
Student reviews and how I accounted for them

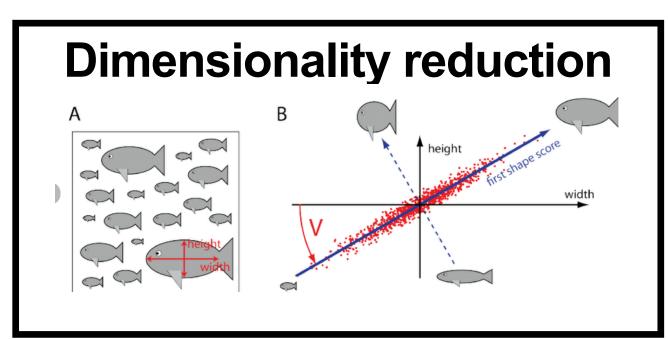
- 1) Hand-writing/pace of course is fast, audio quality is not good
 - I will write slower and improve recording audio
- 2) Python programming/exercise motivation
 - See AI in real-world datasets/mechanical engineering applications so less abstract
 - Iterate some of the main theory concepts: python complements lectures
 - Coding is not the main point: I will post the python with solutions from now on
- 3) More problem sets or some projects?
 - See all past problem sets and quizzes are provided in Moodle
 - I will do more worked out examples in class

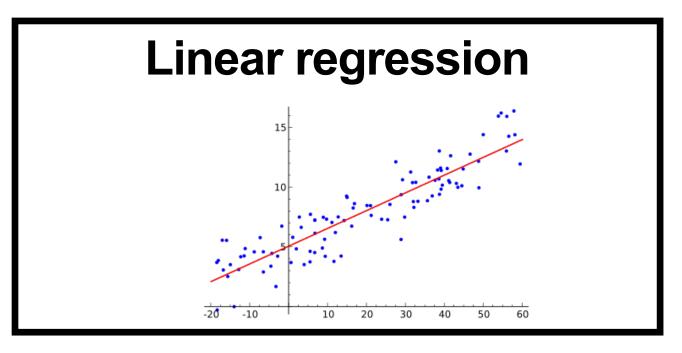
- 4) Complexity of the course material?
 - It's a mathematical course: lecture, python and problem sets all work together to help
 - Goal: see the math behind AI tools, connect with engineering applications
- 5) Level of noise in class

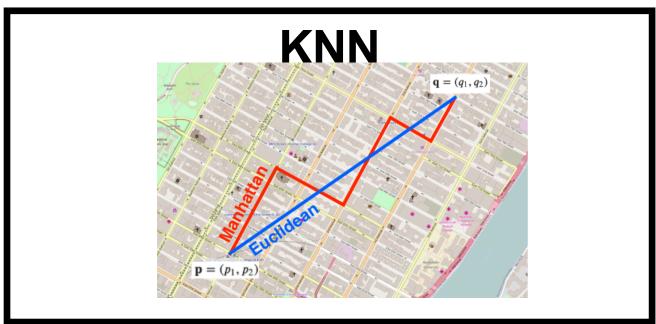


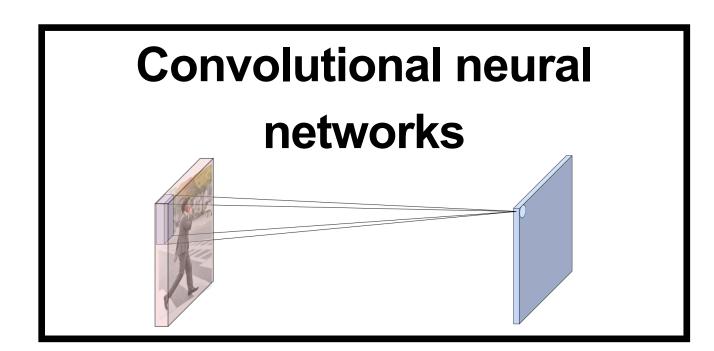


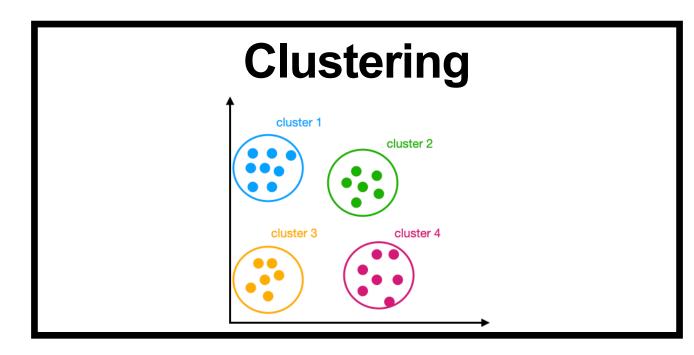


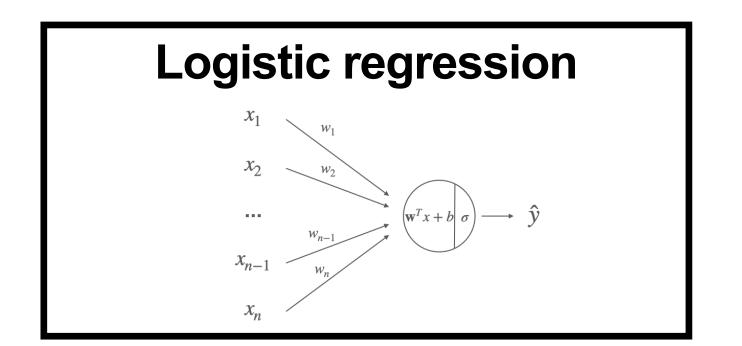


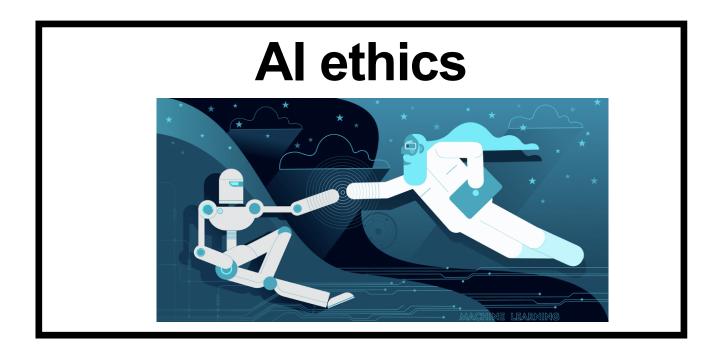


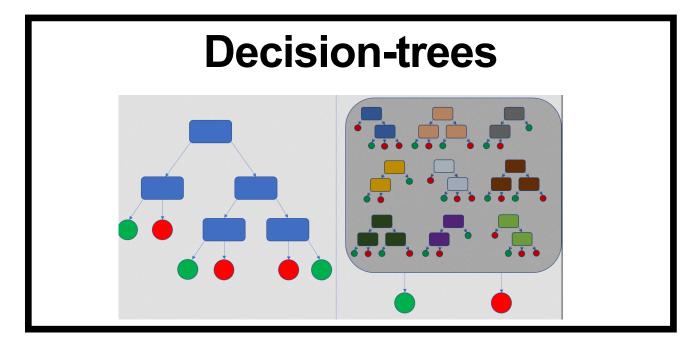


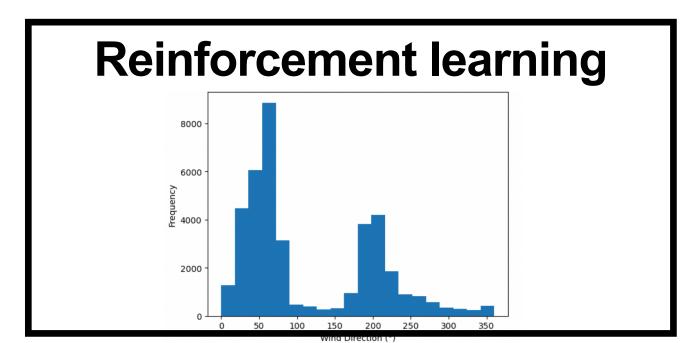












EPFL Announcements

- 1) Special lectures:
 - 1) Dec 9: Al in Industry, representative from Swiss Data Science Center
 - 2) Dec 16: Al ethics, representative from EPFL ethics instructor
- 2) Exam: Friday 31.01.2025 from 15h15 to 18h15 (CE11, CE12, CE1515)

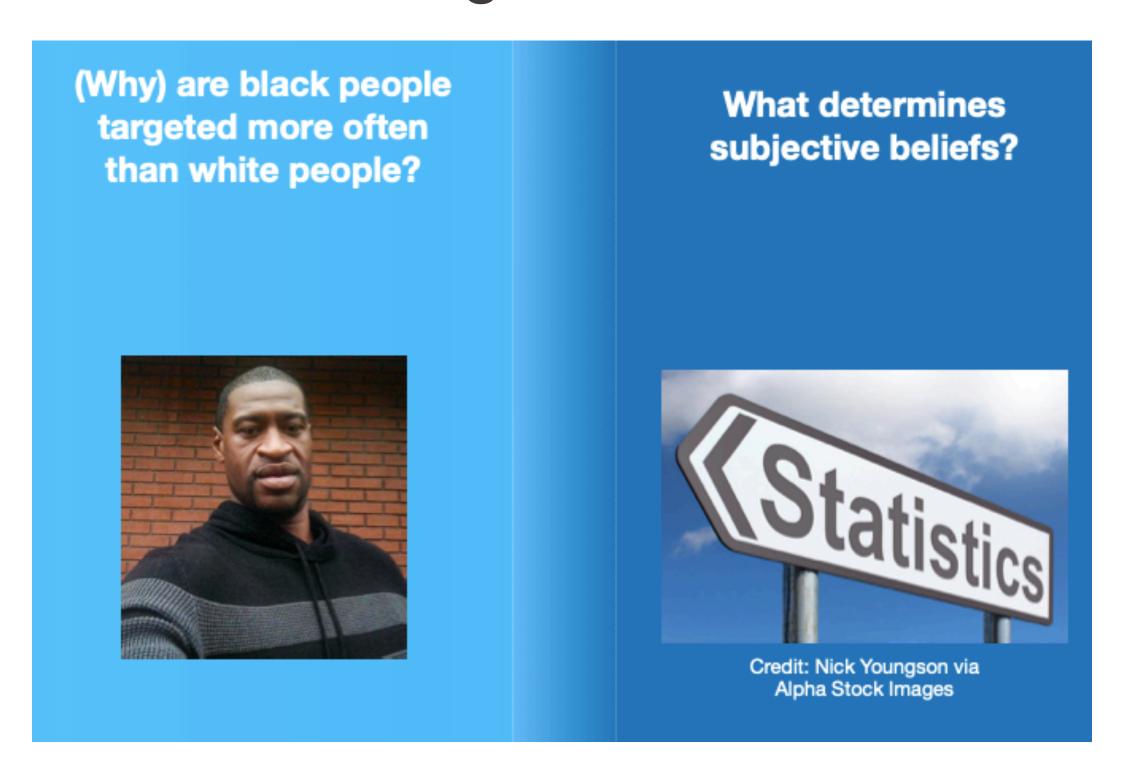
 See past exams with solutions posted on Moodle
- 3) EPFL AI Day: https://memento.epfl.ch/event/artificial-intelligence-day/
 Artificial Intelligence Day

EPFL Review - Naive Bayes classifier and additional exercises
$$P(y = c \mid x) = \frac{\prod_{j=1}^{d} P(x_{j} \mid y = c) P(y = c)}{P(x)}$$
• Exercises and examples of Naive Bayes classifier
$$\frac{N \times (x_{j} \mid y = c) P(y = c)}{P(x_{j} \mid y = c) P(y = c)}$$

- - 1) Python exercise: you did this last week and saw how to code this: dataset for predicting energy efficiency of home devices
 - 2) Online video: additional sources of help and examples: link to StatQuest videos provided
 - 3) Exam 2023, Problem 3, parts 1-7: this week you can go through this and ask questions during exercise hours, note that solutions are provided online
 - 4) Example today: on conditional independence

Exercise - conditional independence

Background of dataset and problem



Group	Population (NYC)	Arrests/Summons	Stops
White	2,717,796	1,938	10,228
Latino	2,346,883	6,540	26,181
Black	1,875,108	9,840	49,362
Others	1,245,527	1,010	6,612
Total	8,185,314	19,328	92,383

Table 1: Stops and arrests/summons by NYC police force, 2014–2017.

Credit: Michael Fleshman via flickr.com

Source: Manuel Foerster and Dominik Karos Article

Step by step example - conditional independence

• 1) Show the probability of being arrested is not independent of being \not \not \uparrow

	being arrested	
P (A B) =	# RIs awastad # awastad	$= \frac{10 \times 10^3}{(10+2) \times 10^3} = \frac{5}{6}$

Group	Population	Number arrested
R1	1,8 x 10^6	10 x 10^3
R2	2,7 x 10^6	2 x 10^3

Step by step example - conditional independence

• 2) Show, conditioned on being stopped, probability of being arrested is independent of being black

Group	Population	Number arrested
R1	1,8 x 10^6	10 x 10^3
R2	2,7 x 10^6	2 x 10^3

$$11P(A,B(C) = \frac{10 \times 10^{3}}{(5+1) \times 10^{5}} = \frac{10 \times 10^{3}}{6 \times 10^{5}}$$

2)
$$P(AIC) = \frac{5 \times 10^{5}}{6 \times 10^{5}}$$

3)
$$P(B(C) = \frac{10+2) \times 10^3}{6 \times 10^5} = \frac{12 \times 10^3}{6 \times 10^5}$$

$$\frac{10 \times 10^{3}}{6 \times 10^{5}} \stackrel{?}{=} \frac{5 \times 10^{5}}{6 \times 10^{5}} \times \frac{12 \times 10^{3}}{6 \times 10^{5}}$$

In Naire Bages classifier, we assume given label y = C, each feature is independent assumption $P(x | y = C) = P(x_1(y=c)P(x_2|y=c)...$ P(×1/7=c) L. we saw example where x EIRd was presence labsence of d words in emails After this assumption. Naive Bayes classifier ...

P(y=c(x)) = $P(x_1|y=c)P(x_2|y=c)...P(x_4|y=c)P(y=c)$

k-Nearest Neighbour

k-NN Problem setup Supervised machine learning

Recall machine learning goal: Use a dataset to produce useful predictions on never-before-

seen data.

 $\{x',y'\}$ $\{x',y'\}$ $\{x',y'\}$

Recall terminology:

Features: input variables $x' \in \mathbb{R}^d$

Label: what we are predicting

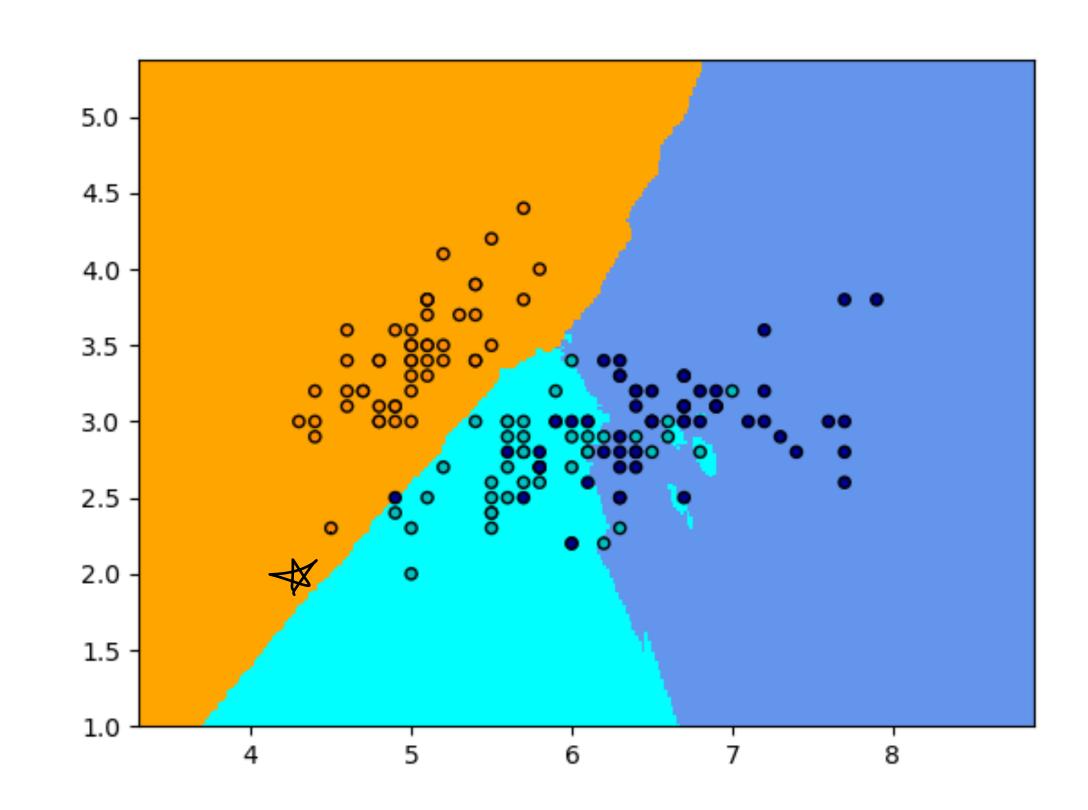
k-NN Abstraction for classification

Problem: Classifying data points among different categories.

k-NN (*k-Nearest Neighbors*) algorithm assumes that data points of similar classes exist in close proximity (Similar Inputs have similar outputs)

It classifies an unknown data point according to the category of its k nearest neighbors

(k = 1, 3, 5, ...0) for binary classification



k-NN Distance Metric

How to measure the proximity between data points? → Measure distance

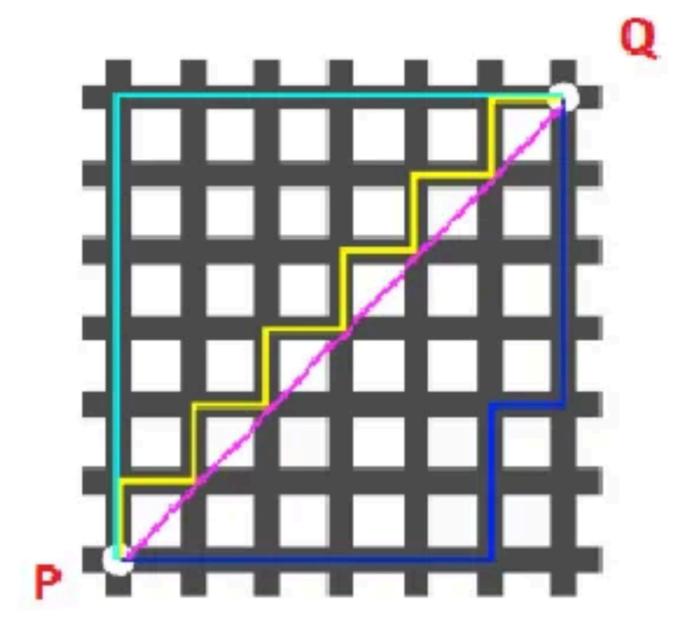
Examples of distance metrics:

Euclidean (L2) distance

$$\sum_{\substack{\xi \text{ uclidean} \\ \xi \text{ uclidean}}} \left(x', \chi^2 \right) = \left(\left(x' - x' \right)^2 + \left(x' - x' \right)^2 + \cdots + \left(x' - x' \right)^2 \right)^2$$

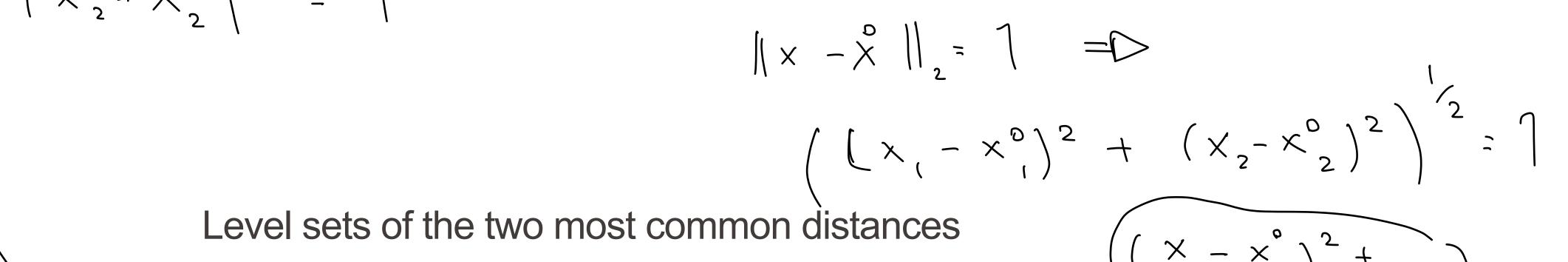
Manhattan (L1) distance

$$\int (x', x^2) = |x', -x'| + |x' - x'| + \dots + |x' - x'|$$
Tranhation

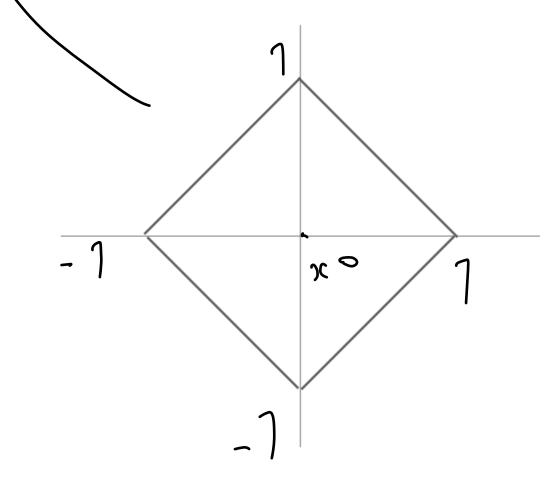


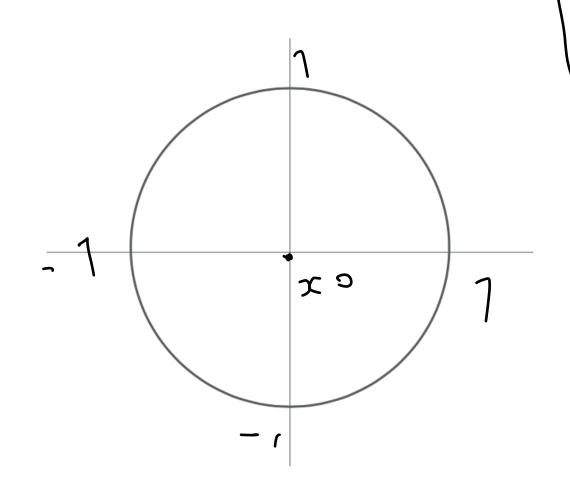
k-NN Distance Metric

How to measure the proximity between data points? → Measure distance



L1 (Manhattan) distance L2 (Euclidean) distance





k-NN Feature scaling

Features might have different scales

Distance metric gives more importance to the feature with largest scale Normalizing data allows equal exploitation of information from features

Z-Score Standardisation: Set mean (μ) to 0, standard deviation (σ) to 1

Let's consider
$$x \in \mathbb{R}^d$$

to scale each feature x :

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \Rightarrow \text{ feature } 2$$

to scale each feature x :

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \Rightarrow \text{ feature } 2$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \Rightarrow \text{ feature } 2$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \Rightarrow \text{ feature } 2$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \Rightarrow \text{ feature } 2$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \Rightarrow \text{ feature } 2$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \Rightarrow \text{ feature } 2$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \Rightarrow \text{ feature } 2$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \Rightarrow \text{ feature } 2$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \Rightarrow \text{ feature } 2$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \Rightarrow \text{ feature } 2$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \Rightarrow \text{ feature } 2$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \Rightarrow \text{ feature } 2$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \Rightarrow \text{ feature } 2$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \Rightarrow \text{ feature } 2$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \Rightarrow \text{ feature } 2$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \Rightarrow \text{ feature } 2$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \Rightarrow \text{ feature } 2$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \Rightarrow \text{ feature } 2$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \Rightarrow \text{ feature } 2$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \Rightarrow \text{ feature } 2$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \Rightarrow \text{ feature } 2$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \Rightarrow \text{ feature } 2$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \Rightarrow \text{ feature } 2$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \Rightarrow \text{ feature } 2$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \Rightarrow \text{ feature } 2$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \Rightarrow \text{ feature } 2$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \Rightarrow \text{ feature } 2$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \Rightarrow \text{ feature } 2$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \Rightarrow \text{ feature } 2$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \Rightarrow \text{ feature } 2$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \Rightarrow \text{ feature } 2$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \Rightarrow \text{ feature } 2$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \Rightarrow \text{ feature } 2$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \Rightarrow \text{ feature } 2$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \Rightarrow \text{ feature } 2$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \Rightarrow \text{ feature } 2$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \Rightarrow \text{ feature } 2$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \Rightarrow \text{ feature } 2$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \Rightarrow \text{ feature } 2$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \Rightarrow \text{ feature } 2$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \Rightarrow \text{ feature } 2$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \Rightarrow \text{ feature } 2$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \Rightarrow \text{ feature } 2$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \Rightarrow \text{ feature } 2$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \Rightarrow \text{ feature } 2$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \Rightarrow \text{ feature } 2$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \Rightarrow \text{ feature } 2$$

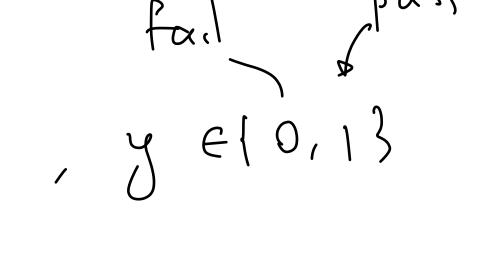
$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \Rightarrow \text{ feature } 2$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \Rightarrow \text{ feature } 3$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \Rightarrow \text{ feature } 3$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \Rightarrow \text$$

How would you implement it?



$$x \in \mathbb{R}^2$$
, $x_1 = \# A \text{ hours studied}$, $y \in \{0,1\}$
 $x_2 = \# \text{ lectros afterdance and whether they need a$

Problem: you are given a dataset, say students study hours and lecture attendance and whether they pass a course or not

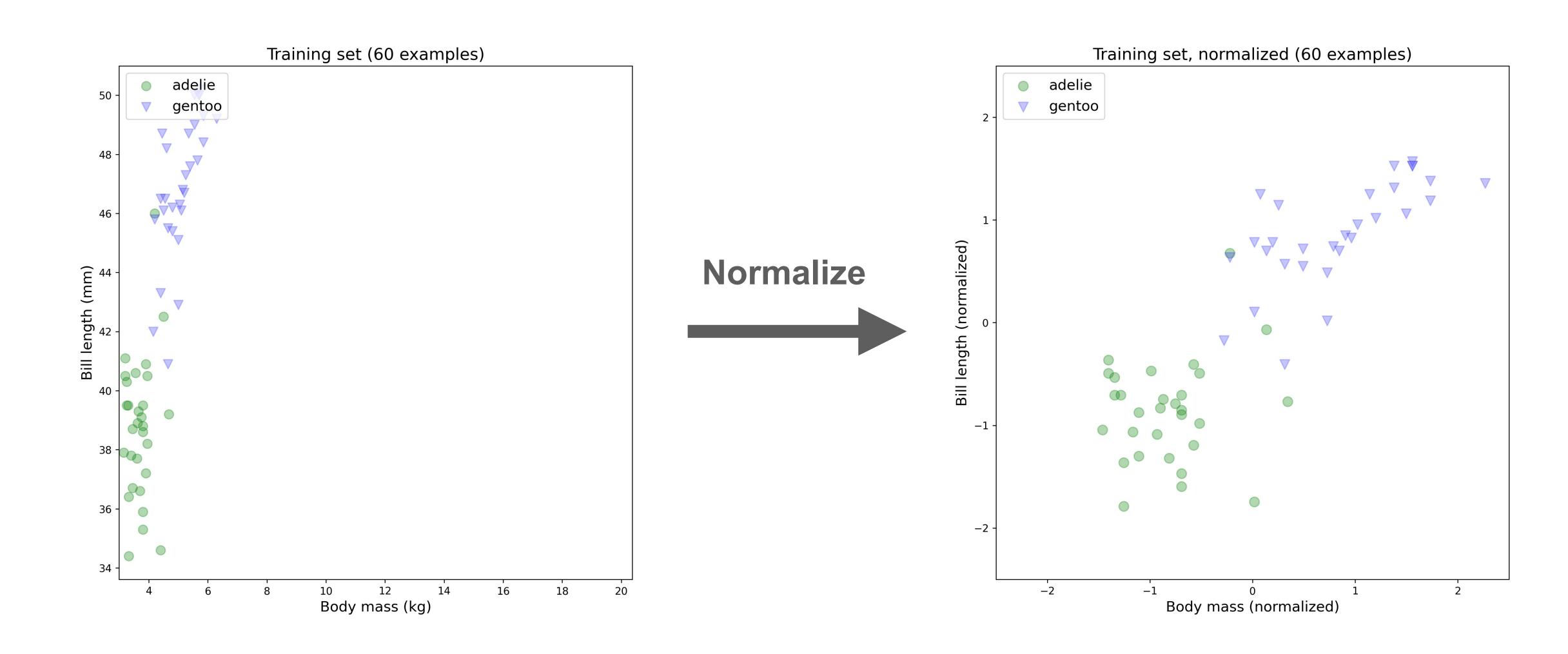
You want to predict for a given student how she'll do.

1 xi, yi);=1
N: number of
students we have test : (x test) clara fer.

k-NN (*k-Nearest Neighbors*) algorithm assumes that data points of similar classes exist in close proximity (Similar Inputs have similar outputs)

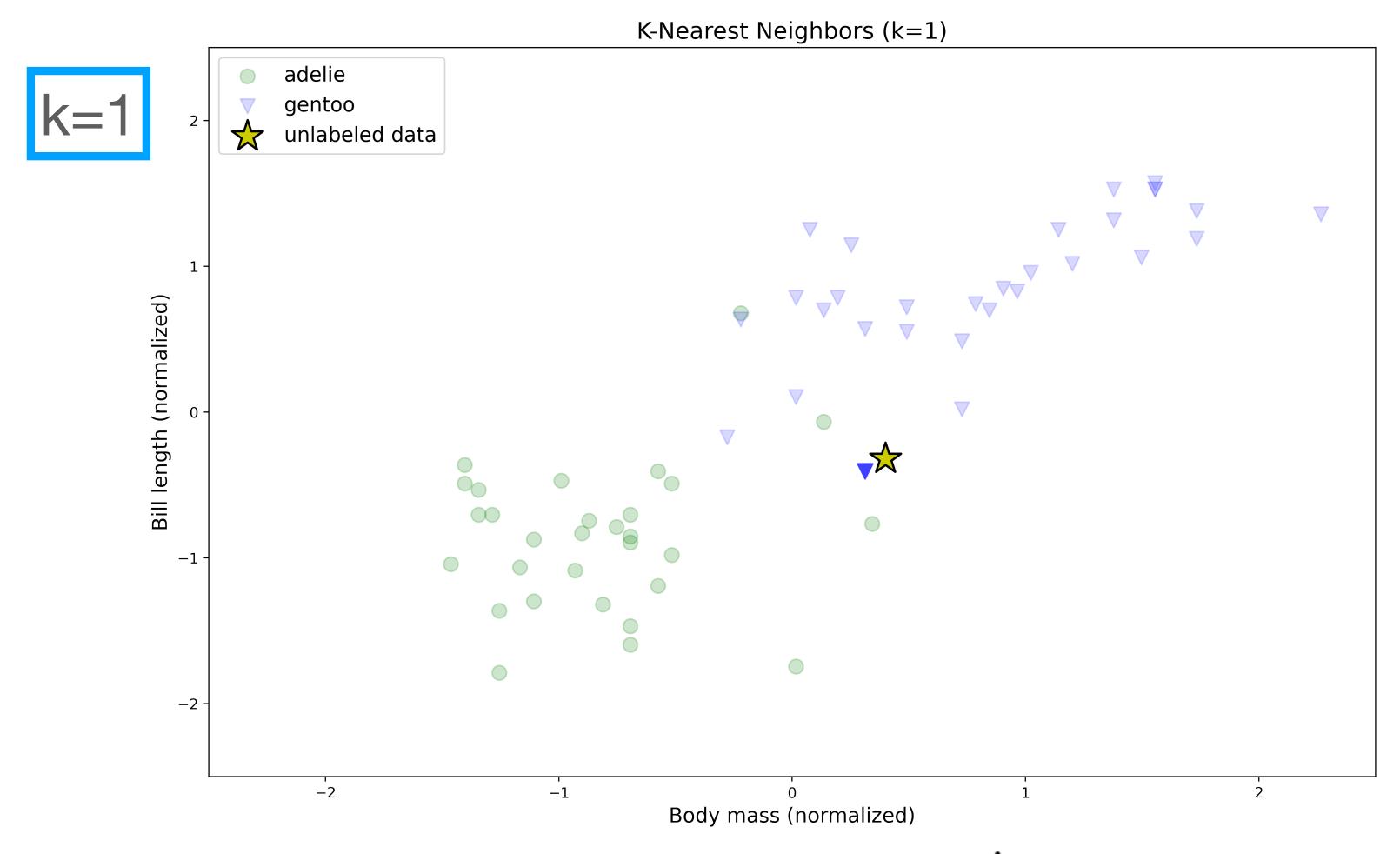
Distance of x test from x^i : |x| test |x| |x

k-NNFeature scaling - Visualisation



k-NN Visualisation

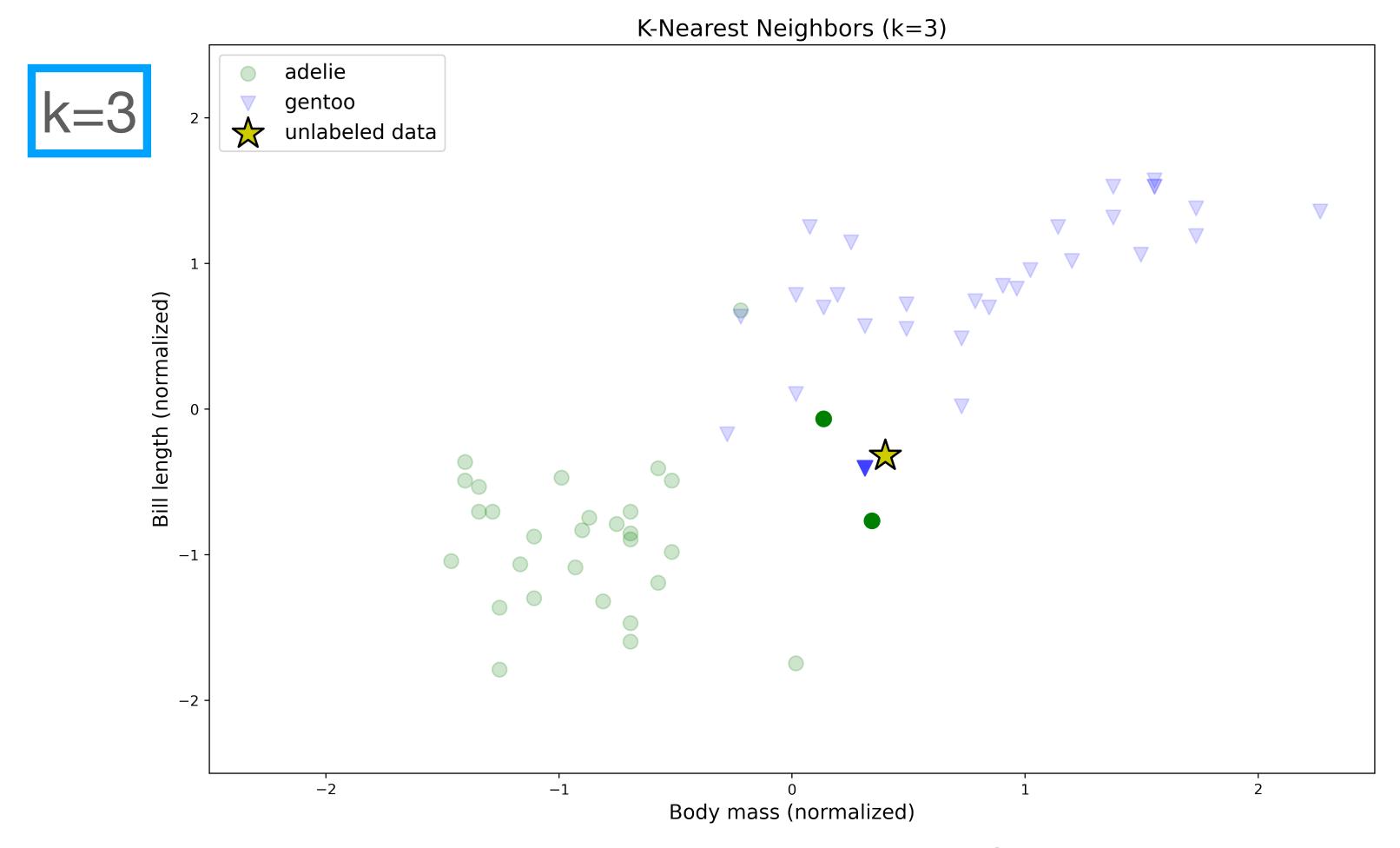
When **k=1**: take label of nearest neighbor



In which category belongs the χ point? —— Gentoo

k-NN k > 1

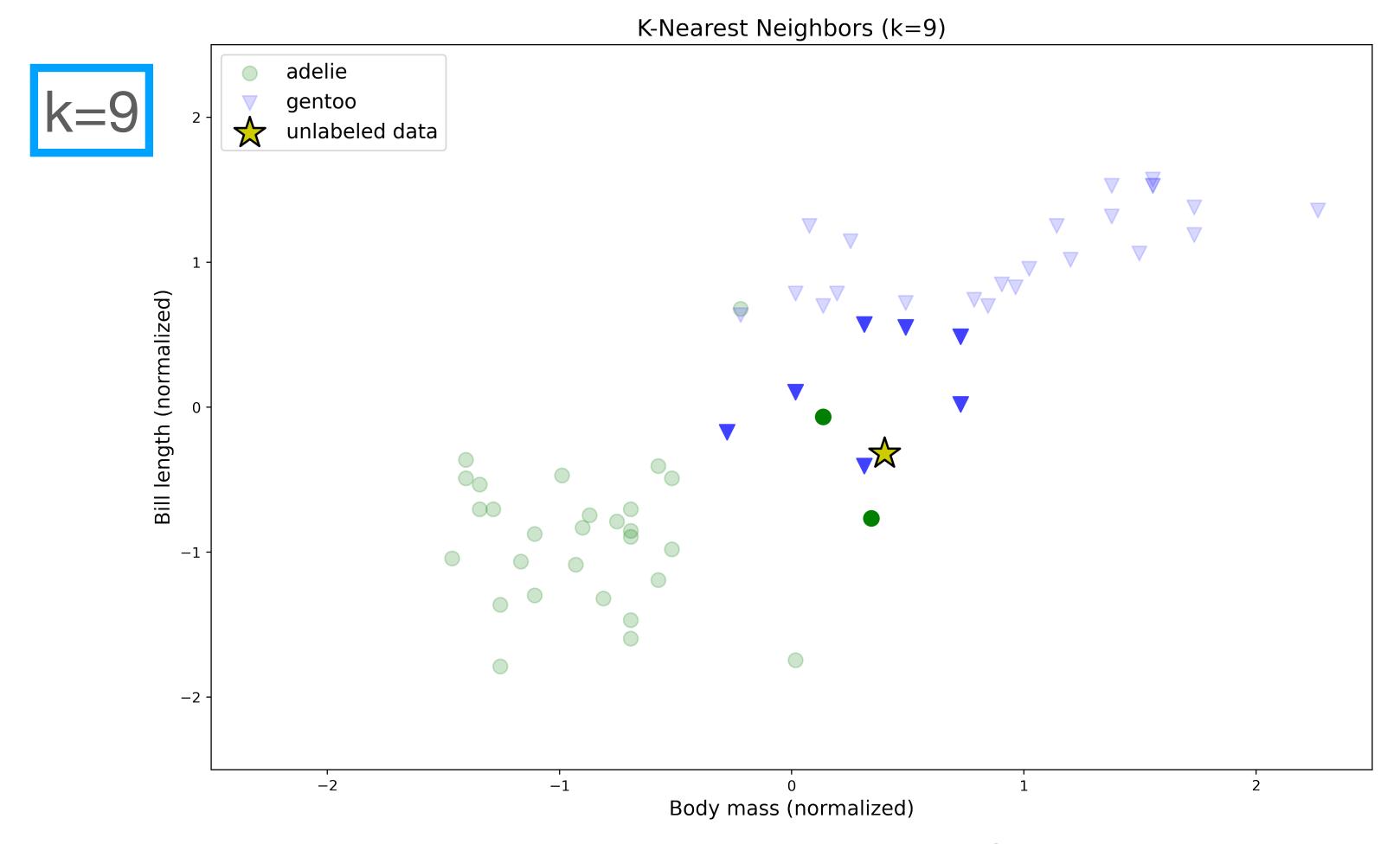
Instead of copying label from nearest neighbor, take majority vote from k closest points



In which category belongs the \bigstar point? — Adélie

k-NN k > 1

Instead of copying label from nearest neighbor, take majority vote from k closest points



In which category belongs the \updownarrow point?

Gentoo

Programming - What is a pseudo-code?

- Description of an algorithm in a language independent way
- It's what we think the algorithm should do before we encode it in python, matlab, C, etc.
- It's the most important step. If you can think in the pseudo-code, then you understand the problem and can code it in language of your choice
- In this course, I don't require a formal syntax of python (otherwise, it becomes a programming again)
- But you are required to know how a pseudo-code would work

k-NN Pseudo-code

- 1. Initialize k, iniplize distance choice (Euclidean/Manhattan/...)
- 2. For every data point in the training set x^{i} for i = 1, ..., NCalculate the **distance** with the unknown data point Dist / xtest, x')
- 3. Pick the k nearest known data points from the unknown data point
- 4. Get the labels of the selected k known data points
- 5. Return the mode (also known as majority vote) of the k labels

y test = mode label

of the label of

IC closest points.

How would you use k-NN for regression? $\gamma \in \mathbb{R}$

of the 10 closest clata pointr.

k-NNImplementation (in your exercises this week)

```
import numpy as np
class NearestNeighbor:
   def __init__(self):
        pass
   def train(self, X, y):
       self.X_train = X
        self.y_train = y
   def euclidean_dist(self, x):
        return np.sqrt(((self.X_train - x) ** 2).sum(axis=1))
   def predict(self, X, k):
       # Get the number of rows to predict
       num_test = X.shape[0]
       y_pred = np.zeros(num_test, dtype=self.y_train.dtype)
       # Find nearest neighbor for each row
        for i in range(num_test):
            # Calculate distances between data point and all points in the train set
            distances = self.euclidean_dist(X[i, :])
           # Find k-closest neighbors in the train set, then find labels of closest neighbors
            neighbor_indices = np.argsort(distances)[:k]
            neighbor_labels = self.y_train[neighbor_indices]
            # Find most frequent label among k-cloest neighbors
            best_label = np.argmax(np.bincount(neighbor_labels))
           y_pred[i] = best_label
        return y_pred
```



```
import numpy as np
class NearestNeighbor:
   def __init__(self):
        pass
    def train(self, X, y):
       self.X_train = X
        self.y_train = y
    def euclidean_dist(self, x):
        return np.sqrt(((self.X_train - x) ** 2).sum(axis=1))
   def predict(self, X, k):
       # Get the number of rows to predict
        num_test = X.shape[0]
       y_pred = np.zeros(num_test, dtype=self.y_train.dtype)
       # Find nearest neighbor for each row
        for i in range(num_test):
            # Calculate distances between data point and all points in the train set
            distances = self.euclidean_dist(X[i, :])
           # Find k-closest neighbors in the train set, then find labels of closest neighbors
            neighbor_indices = np.argsort(distances)[:k]
            neighbor_labels = self.y_train[neighbor_indices]
            # Find most frequent label among k-cloest neighbors
            best_label = np.argmax(np.bincount(neighbor_labels))
           y_pred[i] = best_label
        return y_pred
```

Save training data


```
import numpy as np
class NearestNeighbor:
   def __init__(self):
        pass
   def train(self, X, y):
        self.X_train = X
        self.y_train = y
    def euclidean_dist(self, x):
        return np.sqrt(((self.X_train - x) ** 2).sum(axis=1))
    def predict(self, X, k):
        # Get the number of rows to predict
        num_test = X.shape[0]
       y_pred = np.zeros(num_test, dtype=self.y_train.dtype)
        # Find nearest neighbor for each row
        for i in range(num_test):
            # Calculate distances between data point and all points in the train set
            distances = self.euclidean_dist(X[i, :])
           # Find k-closest neighbors in the train set, then find labels of closest neighbors
            neighbor_indices = np.argsort(distances)[:k]
            neighbor_labels = self.y_train[neighbor_indices]
            # Find most frequent label among k-cloest neighbors
            best_label = np.argmax(np.bincount(neighbor_labels))
            y_pred[i] = best_label
        return y_pred
```

For each test sample:

- Find k-closest training data
- Predict mode of k-closest training data


```
import numpy as np
class NearestNeighbor:
   def __init__(self):
        pass
   def train(self, X, y):
        self.X_train = X
        self.y_train = y
    def euclidean_dist(self, x):
        return np.sqrt(((self.X_train - x) ** 2).sum(axis=1))
   def predict(self, X, k):
       # Get the number of rows to predict
        num_test = X.shape[0]
       y_pred = np.zeros(num_test, dtype=self.y_train.dtype)
       # Find nearest neighbor for each row
        for i in range(num_test):
            # Calculate distances between data point and all points in the train set
            distances = self.euclidean_dist(X[i, :])
           # Find k-closest neighbors in the train set, then find labels of closest neighbors
            neighbor_indices = np.argsort(distances)[:k]
            neighbor_labels = self.y_train[neighbor_indices]
            # Find most frequent label among k-cloest neighbors
            best_label = np.argmax(np.bincount(neighbor_labels))
           y_pred[i] = best_label
        return y_pred
```

Q: With N examples, how fast are training and prediction?


```
import numpy as np
class NearestNeighbor:
   def __init__(self):
        pass
   def train(self, X, y):
        self.X_train = X
        self.y_train = y
    def euclidean_dist(self, x):
        return np.sqrt(((self.X_train - x) ** 2).sum(axis=1))
   def predict(self, X, k):
       # Get the number of rows to predict
        num_test = X.shape[0]
       y_pred = np.zeros(num_test, dtype=self.y_train.dtype)
       # Find nearest neighbor for each row
        for i in range(num_test):
            # Calculate distances between data point and all points in the train set
            distances = self.euclidean_dist(X[i, :])
           # Find k-closest neighbors in the train set, then find labels of closest neighbors
            neighbor_indices = np.argsort(distances)[:k]
            neighbor_labels = self.y_train[neighbor_indices]
            # Find most frequent label among k-cloest neighbors
            best_label = np.argmax(np.bincount(neighbor_labels))
           y_pred[i] = best_label
        return y_pred
```

Q: With N examples, how fast are training and prediction?

A: Train O(1), predict O(N)


```
import numpy as np
class NearestNeighbor:
    def __init__(self):
        pass
    def train(self, X, y):
        self.X_train = X
        self.y_train = y
    def euclidean_dist(self, x):
        return np.sqrt(((self.X_train - x) ** 2).sum(axis=1))
    def predict(self, X, k):
        # Get the number of rows to predict
        num_test = X.shape[0]
        y_pred = np.zeros(num_test, dtype=self.y_train.dtype)
        # Find nearest neighbor for each row
        for i in range(num_test):
            # Calculate distances between data point and all points in the train set
            distances = self.euclidean_dist(X[i, :])
            # Find k-closest neighbors in the train set, then find labels of closest neighbors
            neighbor_indices = np.argsort(distances)[:k]
            neighbor_labels = self.y_train[neighbor_indices]
            # Find most frequent label among k-cloest neighbors
            best_label = np.argmax(np.bincount(neighbor_labels))
            y_pred[i] = best_label
        return y_pred
```

Q: With N examples, how fast are training and prediction?

A: Train O(1), predict O(N)

If we are using for real-time decision-making, this could be bad: we want classifiers that are **fast** at prediction; **slow** for training can be ok

k-NN Hyperparameters

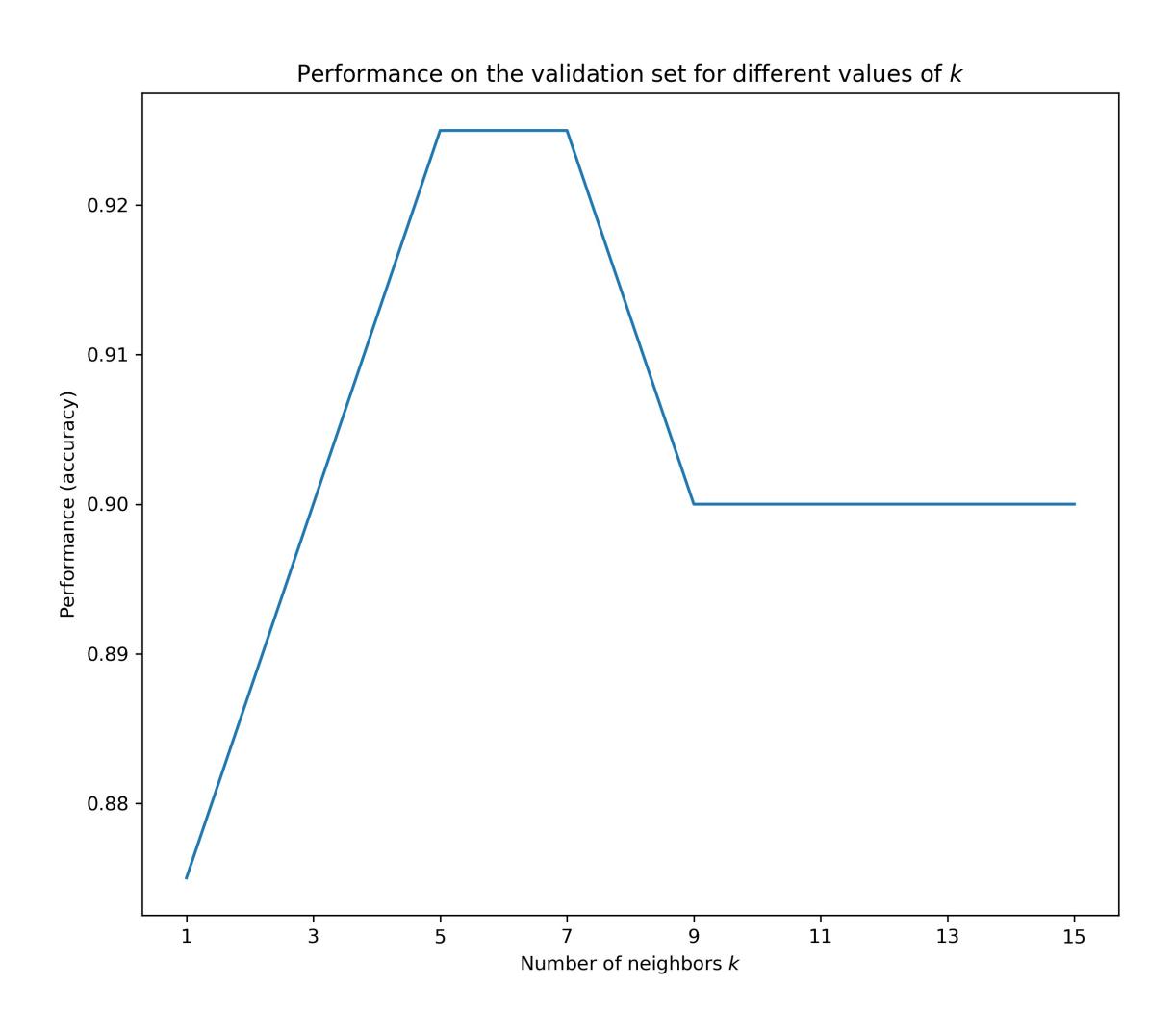
What is the best value of **k** to use? What is the best **distance** to use?

These are hyperparameters: choices about the model/algorithm that we set rather than learn

Very problem-dependent.

Must try them all out and see what works best.

k-NN Setting hyperparameters



Validation set accuracy for different values of **k** for our penguin classification task

(Seems that k = 5 or 7 works best for this example)

Train, validate, test in ML

Setting hyperparameters

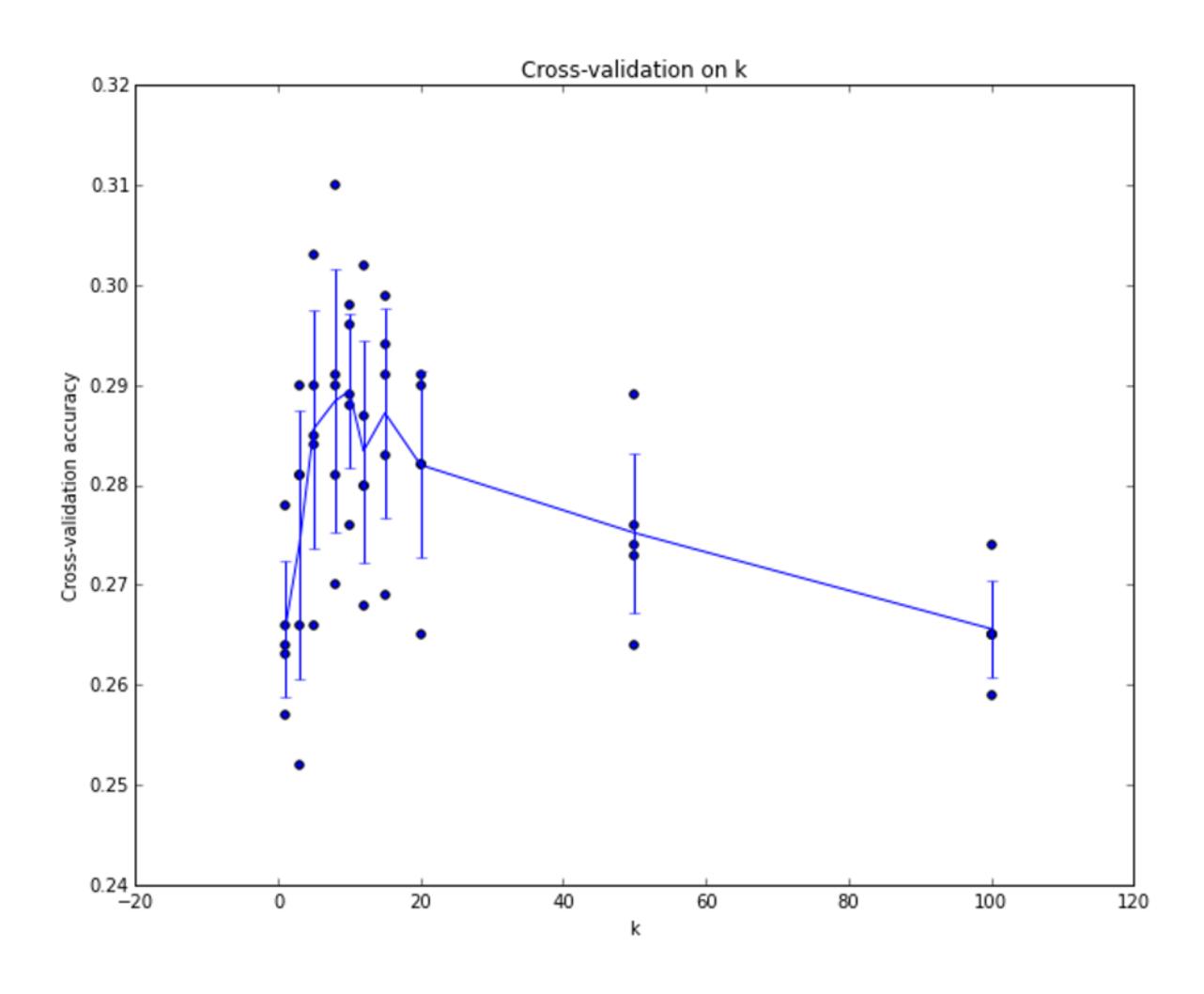
Your Dataset

Cross-Validation: Split data into **folds**, try each fold as validation and average the results

Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Test
Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Test
Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Test
Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Test
Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Test

Useful for small datasets

k-NN Setting hyperparameters



Different dataset: 5-fold cross-validation for the value of **k**.

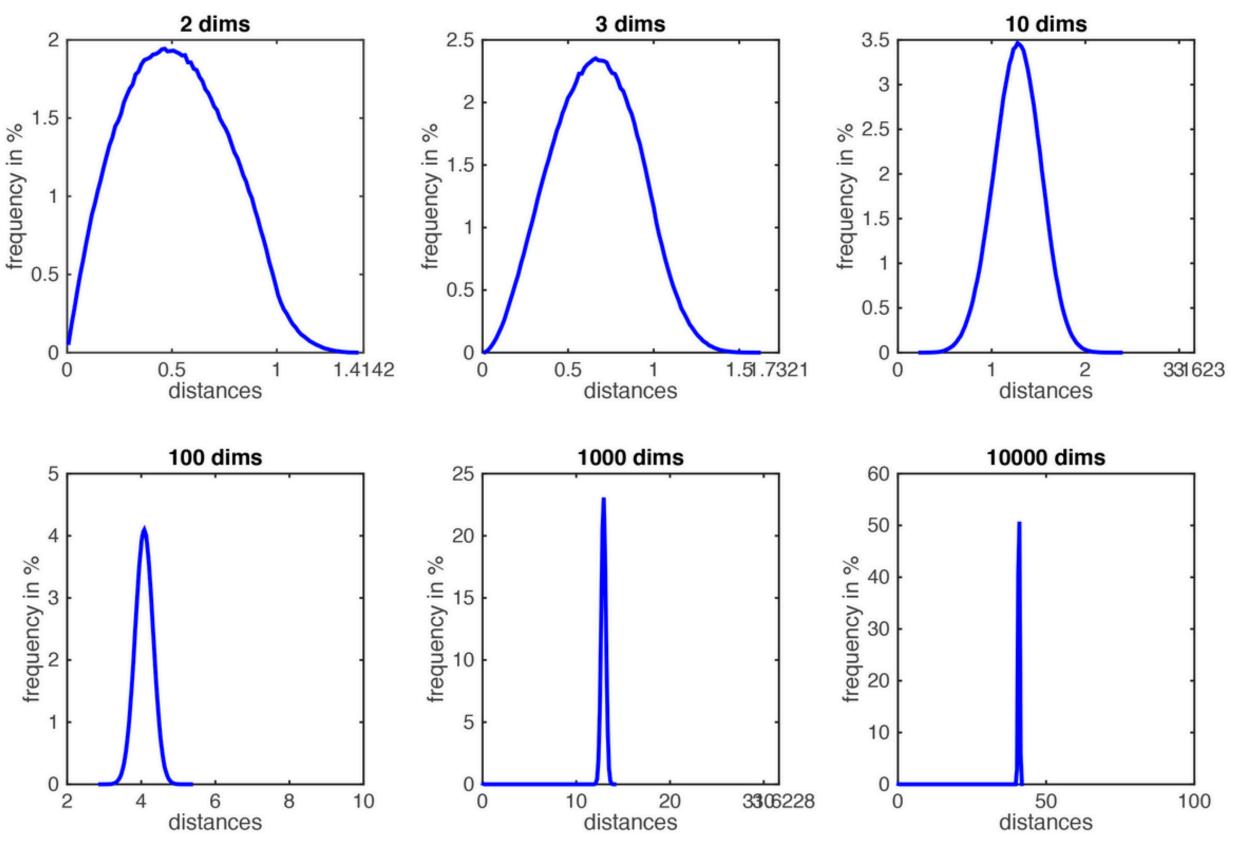
Each point: single outcome.

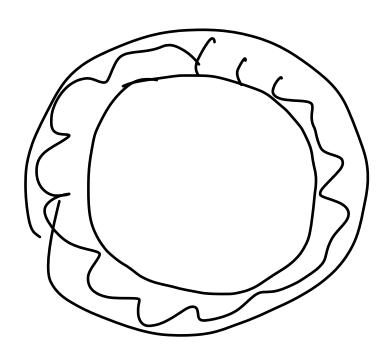
The line goes through the mean, bars indicate standard deviation

(Seems that k ~= 7 works best for this data)

k-NN

For randomly distributed points in high dimensions, distances concentrate within a very small range





Distribution of all pairwise distances between randomly distributed points within **d**-dimensional unit squares, <u>Reference</u>

Theory: <u>Aggarwal et al. 2001, On the Surprising Behavior of Distance Metrics in High Dimensional Space</u>

More intuition: StackExchange article

k-NN Summary

Advantages

- Easy to implement
- No training required
- New data can be added seamlessly
- Versatile useful for regression and classification

Disadvantages

- Does not work as well in high dimensions
- Sensitive to noisy data and skewed class distribution
- Requires high memory
- Prediction stage is slow with large data, requires comparison with all samples in dataset

k-Nearest Neighbours in python

- Dataset: Biomechanic features of orthopaedic patients, and the type of injury
- Goal: Classify the condition of patients based on biomechanic features

Normal Disc Herniated Disc	Sciatic Nerve compressed by derniated Disc

		pelvic_tilt	degree_spondylolisthesis	class
	0	22.552586	-0.254400	Hernia
	1	10.060991	4.564259	Hernia
	2	22.218482	-3.530317	Hernia
	3	24.652878	11.211523	Hernia
	4	9.652075	7.918501	Hernia
	•••			
	85	9.906072	20.315315	Spondylolisthesis
	86	17.879323	22.123869	Spondylolisthesis
	87	10.218996	37.364540	Spondylolisthesis
	88	16.800200	24.018575	Spondylolisthesis
	89	23.896201	27.283985	Spondylolisthesis

- Dataset: Pinguin body features and their specie type
- Goal: Classify the specie of a new observed pinguin

	species	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g
0	Chinstrap	49.0	19.5	210.0	3950.0
1	Chinstrap	50.9	19.1	196.0	3550.0
2	Gentoo	42.7	13.7	208.0	3950.0
3	Chinstrap	43.5	18.1	202.0	3400.0
4	Chinstrap	49.8	17.3	198.0	3675.0

