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Outline

▪ Hour 1 
• Student reviews, discussion and measures to incorporate them 

• Review, announcements 

▪ Hour 2: k-Nearest Neighbour (k-NN)
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Student reviews and how I accounted for them
1) Hand-writing/pace of course is fast, audio quality is not good

- I will write slower and improve recording audio

2) Python programming/exercise motivation  
- See AI in real-world datasets/mechanical engineering applications so less abstract
- Iterate some of the main theory concepts:  python complements lectures
- Coding is not the main point: I will post the python with solutions from now on

3) More problem sets or some projects? 
- See all past problem sets and quizzes are provided in Moodle
- I will do more worked out examples in class

4) Complexity of the course material?
- It’s a mathematical course: lecture, python and problem sets all work together to help
- Goal: see the math behind AI tools, connect with engineering applications

5) Level of noise in class
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AI ethics



Announcements

1) Special lectures:  
1) Dec 9: AI in Industry, representative from Swiss Data Science Center 
2) Dec 16: AI ethics, representative from EPFL ethics instructor 

2) Exam: Friday 31.01.2025 from 15h15 to 18h15 (CE11, CE12, CE1515) 
See past exams with solutions posted on Moodle 

3) EPFL AI Day: https://memento.epfl.ch/event/artificial-intelligence-day/
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Review - Naive Bayes classifier and additional exercises

• Exercises and examples of Naive Bayes classifier  
1) Python exercise: you did this last week and saw how to code this: dataset for predicting 
energy efficiency of home devices 

2) Online video: additional sources of help and examples: link to StatQuest videos provided 

3) Exam 2023, Problem 3, parts 1-7: this week you can go through this and ask questions 
during exercise hours, note that solutions are provided online 

4) Example today: on conditional independence
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Exercise - conditional independence

Source: Manuel Foerster and Dominik Karos Article


Background of dataset and problem



Step by step example - conditional independence

Group Population Number arrested

R1 1,8 x 10^6 10 x 10^3
R2 2,7 x 10^6 2 x 10^3 

• 1) Show the probability of being arrested is not independent of being B& RT

two events A ,
B are independent if

P(A(B) = P(A)

(equivalently . P(A , B) = P(A)P(B1)
as 5/ + thes
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Step by step example - conditional independence

Group Population Number arrested

R1 1,8 x 10^6 10 x 10^3
R2 2,7 x 10^6 2 x 10^3 

Group Population Number arrested Number stopped

R1 1,8 x 10^6 10 x 10^3 5 x 10^5
R2
 2,7 x 10^6 2 x 10^3 1 x 10^5

• 2) Show, conditioned on being stopped, probability of being 
arrested is independent of being black

P(A , B(c) = P(A)c)P(BIC) ?

(we used this assomphen in Naive Bayes classifier
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In Naive Bayes clasher , we assume

given label y
= c , each feature is independent

assumphan
&
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↳ we saw example where EIR" was

presence/absence of a words in emails

After this assumpter . Naire Bayes classber ...
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k-Nearest Neighbour



k-NN Problem setup
Supervised machine learning

Recall machine learning goal: Use a dataset to produce useful predictions on never-before-
seen data. 

Recall terminology: 
Features: input variables 
Label: what we are predicting 
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k-NN Abstraction for classification

Problem: Classifying data points among different categories. 

k-NN (k-Nearest Neighbors) algorithm assumes that data 
points of similar classes exist in close proximity 
(Similar Inputs have similar outputs ) 

It classifies an unknown data point according to the category 
of its k nearest neighbors  

(k = 1, 3, 5, …0) for binary classification
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k-NN Distance Metric

How to measure the proximity between data points?   Measure distance→

Examples of distance metrics: 

Euclidean (L2) distance  

Manhattan (L1) distance 
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k-NN Distance Metric

How to measure the proximity between data points?   Measure distance→

L1 (Manhattan) distance L2 (Euclidean) distance 
Level sets of the two most common distances
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k-NN Feature scaling

Features might have different scales 
Distance metric gives more importance to the feature with largest scale 
Normalizing data allows equal exploitation of information from features 

Z-Score Standardisation: Set mean (µ) to 0, standard deviation (σ)  to 1 
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k-NN How would you implement it? 

Problem: you are given a dataset, say students study hours and lecture attendance and whether they pass a 
course or not 

You want to predict for a given student how she’ll do.  

k-NN (k-Nearest Neighbors) algorithm assumes that data points of similar classes exist in close proximity 
(Similar Inputs have similar outputs ) 

For simplicity take k=1, and use Manhattan distance
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k-NN
Feature scaling - Visualisation

Normalize



k-NN
Visualisation

In which category belongs the      point? 

k=1

When k=1: 
take label of nearest neighbor

Gentoo



k > 1

k=3

Instead of copying label from nearest neighbor,  
take majority vote from k closest points

In which category belongs the      point? Adélie

k-NN



k=9

Instead of copying label from nearest neighbor,  
take majority vote from k closest points

In which category belongs the      point? Gentoo

k-NN
k > 1



Programming - What is a pseudo-code? 
▪ Description of an algorithm in a language independent way 

▪ It’s what we think the algorithm should do before we encode it in python, 
matlab, C, etc. 

▪ It’s the most important step. If you can think in the pseudo-code, then you 
understand the problem and can code it in language of your choice 

▪ In this course, I don’t require a formal syntax of python (otherwise, it 
becomes a programming again) 

▪ But you are required to know how a pseudo-code would work



Pseudo-code

1. Initialize k  
2. For every data point in the training set 

Calculate the distance with the unknown data point 
3. Pick the k nearest known data points from the unknown data point 
4. Get the labels of the selected k known data points 
5. Return the mode (also known as majority vote) of the k labels

k-NN

How would you use k-NN for regression? 

· inihilize distance Choice [Evalidean/Manhattan / ... )
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Implementation (in your exercises this week)
k-NN



Implementation

Save training data

k-NN



Implementation

For each test sample: 
▪ Find k-closest training data 
▪ Predict mode of k-closest 

training data

k-NN



Implementation

Q: With N examples, how 
fast are training and 
prediction? 

k-NN



Implementation

Q: With N examples, how 
fast are training and 
prediction? 

A: Train O(1), predict O(N) 

k-NN



Implementation

Q: With N examples, how 
fast are training and 
prediction? 

A: Train O(1), predict O(N) 

If we are using for real-time 
decision-making, this could 
be bad: we want classifiers 
that are fast at prediction; 
slow for training can be ok 

k-NN



k-NN
Hyperparameters 

What is the best value of k to use ?
What is the best distance to use ?

Very problem-dependent. 
Must try them all out and see what works best.

These are hyperparameters: choices about the 
model/algorithm that we set rather than learn



k-NN
Setting hyperparameters 

Validation set accuracy for different values 
of k for our penguin classification task 

(Seems that k = 5 or 7 works best  
for this example)



Setting hyperparameters 
Your Dataset

Cross-Validation : Split data into folds, try each fold as validation 
and average the results 

TestFold 5Fold 4Fold 3Fold 2Fold 1

TestFold 5Fold 4Fold 3Fold 2Fold 1

TestFold 5Fold 4Fold 3Fold 2Fold 1

Useful for small datasets

TestFold 5Fold 4Fold 3Fold 2Fold 1

TestFold 5Fold 4Fold 3Fold 2Fold 1

Train, validate, test in ML



Setting hyperparameters 

Different dataset: 
5-fold cross-validation 

for the value of k. 

Each point: single 
outcome.  

The line goes 
through the mean, bars 

indicate standard 
deviation 

(Seems that k ~= 7 works best 
for this data) 

k-NN



Distribution of all pairwise distances between randomly  
distributed points within d-dimensional unit squares, Reference

For randomly distributed points in high dimensions, distances concentrate within a very small range

Theory: Aggarwal et al. 2001, On the Surprising Behavior of Distance Metrics in High Dimensional Space
More intuition: StackExchange article

k-NN

D



k-NN
Summary

Advantages Disadvantages

▪ Easy to implement 
▪ No training required 
▪ New data can be added 

seamlessly 
▪ Versatile - useful for regression 

and classification

▪ Does not work as well in high 
dimensions  

▪ Sensitive to noisy data and 
skewed class distribution 

▪ Requires high memory 
▪ Prediction stage is slow with 

large data, requires comparison 
with all samples in dataset



k-Nearest Neighbours in python

▪ Dataset: Biomechanic features of orthopaedic 
patients, and the type of injury

▪ Goal: Classify the condition of patients based 
on biomechanic features

▪ Dataset: Pinguin body features and their 
specie type

▪ Goal: Classify the specie of a new observed 
pinguin


